

使用 Agilent 990 微型气相色谱仪分析 炼厂气

作者

Jie Zhang 安捷伦科技有限公司

前言

炼厂气分析 (RGA) 是一种基于气相色谱的常用测试方法,用于表征原油精炼过程中产生的气体,包括烟囱排放物、火焰和重整气流。尽管气体组成不尽相同,但通常都含有 C_1 至 C_5 烷烃、 C_6 + 烷烃、 C_7 至 C_5 烯烃以及非冷凝气体。

Agilent 990 微型气相色谱仪提供快速 RGA 解决方案,相比常规实验室 GC 解决方案可大大缩短分析时间,例如从 6-8 分钟缩短至 2-3 分钟。

之前,已基于 Agilent 490 微型气相色谱仪开发了两种 RGA 解决方案 $^{[1,2]}$ 。其中一种为四通道配置,在分子筛通道分析除 CO_2 以外的永久性气体,在 PoraPLOT U 通道分析 C_2 烷烃/烯烃、二氧化碳 (CO_2) 和硫化氢 (H_2S) ,在氧化铝通道分析 C_3 至 C_5 的烷烃/烯烃,以及在 CP-Sil 5CB 通道分析 C_6+ 烷烃。另一种 RGA 解决方案为三通道配置,其中通道 1 和 2 与四通道配置中相同。第三个通道为氧化铝通道,带有反吹至检测器 (BF2D) 选件,可分离 C_3 至 C_5 的烷烃/烯烃,并将 C_6/C_6+ 烷烃作为组合峰反吹至检测器,从而对 C_6/C_6+ 进行整体测量。在 990 微型气相色谱上实现这两种配置,并将之应用于炼厂气标气分析。

仪器

通道1

10 m CP-Molesieve 5 Å 通道,带有常规的反吹选件 (BF),用于除 CO_2 外的永久气体分析。标配的保留时间稳定配件用于实现更出色的长期保留时间稳定性。

通道 2

10 m CP-PoraPLOT U 通道,带有常规的反 吹选件,用于分析 CO_2 、 C_2 烷烃/烯烃和 H_2 S。990 微型气相色谱仪的样品流路表面(包括样品进样口及其与每个通道的连接管线)经过专利的金属去活技术处理,具有更好的惰性,更有利于检测几 ppm 浓度的活性组分(如 H_2 S),并获得令人满意的信噪比。

四通道解决方案的通道3

10 m CP-AL $_2$ O $_3$ /KCL 通道,常规反吹配 置,用于分析 C $_3$ 至 C $_5$ 烷烃/烯烃

三通道解决方案的通道3

10 m CP-AL $_2$ O $_3$ /KCL 通道,反吹至检测器配置,用于分析 C $_3$ 至 C $_5$ 烷烃/烯烃,并对 C $_6$ /C $_6$ + 烷烃进行整体分析

通道 4

8 m CP-Sil 5CB 直型通道,用于分析 C_6 和 C_6 + 烷烃

表 1. 两种 RGA 解决方案配置

RGA 配置 1	分析的化合物	RGA 配置 2	分析的化合物	
10 m CP-Molesieve 5 Å 反吹通道带 (RTS)	永久性气体(CO ₂ 除外)	10 m CP-Molesieve 5 Å 反吹通道 (RTS)	永久性气体(CO ₂ 除外)	
10 m CP-PoraPLOT U 反吹通道	CO ₂ 、 C ₂ H ₄ 、 C ₂ H ₆ 、 C ₂ H ₂ 、 H ₂ S	10 m CP-PoraPLOT U 反吹通道	CO ₂ 、 C ₂ H ₄ 、 C ₂ H ₆ 、 C ₂ H ₂ 、 H ₂ S	
10 m CP-AL ₂ O₃/KCL 反吹通道	C ₃ -C ₅ 烷烃和 C ₃ -C ₅ 烯烃	· 10 m CP-AL₂O₂/KCL 反吹至检测器通道	C ₃ -C ₅ 烷烃和 C ₃ -C ₅ 烯烃; C ₆ /C ₆ + 烃类总量	
8 m CP-Sil 5CB 直型通道	详细的 C ₆ 和 C ₆ + 烃类分析	TO III CP-AL ₂ O ₃ / NCL 及以主位测益超道		

表 2. 每种通道的分析条件

通道类型	10 m CP-Molesieve 5 Å 反吹通道 (RTS)	10 m CP-PoraPLOT U 反吹通道	10 m CP-AL₂O₃/KCL 反吹通道	8 m CP-Sil 5CB 直型通道	10 m CP-AL ₂ O ₃ /KCL 反吹至检测器通道
载气	氩气	氦气	氦气	氦气	氦气
进样器温度	110 °C	110 °C	110 °C	110 °C	110 °C
进样时间	40 ms	40 ms	40 ms	40 ms	40 ms
柱头压	200 kPa	150 kPa	100 kPa	200 kPa	300 kPa
柱温	80 °C	100 °C	90 °C	150 °C	100 °C
反吹时间	7秒	7.5 秒	25 秒	不适用	4.5 秒
信号反转	不适用	不适用	不适用	不适用	从5到12秒

表 3. 模拟炼厂气样品

峰编号	化合物	浓度
1	氢气	12.9%
2	氧气	0.098%
3	氮气	平衡气
4	甲烷	4.99%
5	一氧化碳	0.989%
6	二氧化碳	2.96%
7	乙烯	2.07%
8	乙烷	3.94%
9	乙炔	1.06%
10	硫化氢	1%
11	丙烷	1.99%
12	丙烯	0.980%
13	丙二烯	1.01%
14	异丁烷	0.295%

峰编号	化合物	浓度
15	丁烷	0.295%
16	反式-2-丁烯	0.303%
17	1-丁烯	0.295%
18	异丁烯	0.307%
19	顺式-2-丁烯	0.306%
20	丙炔	1.01%
21	异戊烷	0.104%
22	1,3-丁二烯	0.311%
23	戊烷	0.097%
24	反式-2-戊烯	0.098%
25	2-甲基丁烯	0.049%
26	1-戊烯	0.104%
27	顺式-2-戊烯	0.094%
28	己烷	0.024%

图 1A 和 1B 展示了在 CP-Molesieve 5 Å 色谱柱上分离氢气、氧气、氮气、甲烷和一氧化碳获得的色谱图。当永久性气体(CO₂ 除外)进入分子筛色谱柱时,反吹功能会在预设的反吹时间自动启动,使预柱中的气流反向,将重质组分吹扫出预柱。本测试采用氩气作为氢气测定的载气。一氧化碳在 100 秒内流出。

图 2 展示了在 CP-PoraPLOT U 色谱柱上 分析二氧化碳、乙烯、乙烷、乙炔和 H_2S 获得的色谱图。由于样品流路的出色惰性, H_2S 获得了对称的峰形。 H_2S 在 60 秒内流出。

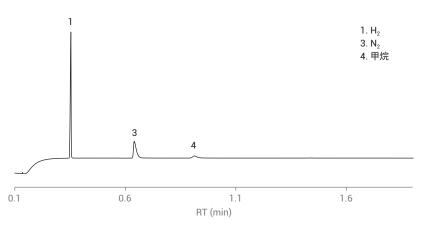


图 1A. CP-Molesieve 5 Å 色谱柱 (通道 1) 上的模拟 RGA

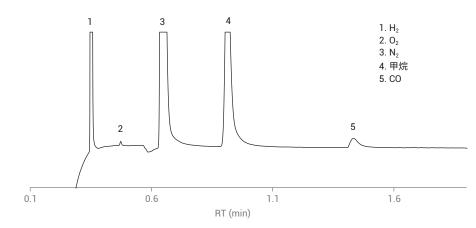


图 1B. CP-Molesieve 5 Å 色谱柱(通道 1)上的模拟 RGA(放大色谱图)

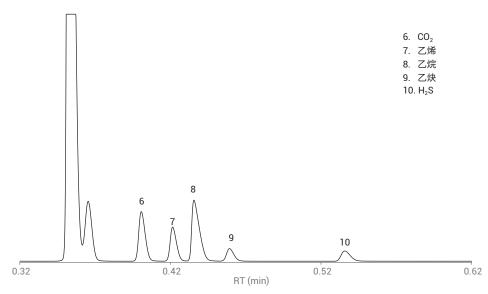


图 2. CP-PoraPLOT U 色谱柱 (通道 2) 上的模拟 RGA

图 3 为在带有常规反吹选件的氧化铝色 谱柱上获得的 C_3 至 C_5 烷烃/烯烃色谱图。 C_6 和 C_6 + 烷烃在进入氧化铝分析柱之前 被反吹出预柱。优化反吹时间以确保 C_5 烷烃/烯烃完全从分析柱流出,而 C_6 / C_6 + 烷烃不会进入分析柱。在此测试通道上,于所采用的分析条件下,顺式-2-戊烯在 180 秒内流出。

图 4 展示了在 8 m CP-SiI 5CB 通道上分析模拟炼厂气获得的色谱图。此通道用于 C_6 和 C_6 + 烃类的分析。己烷与 C_5 烷烃/烯烃充分分离。在 80 秒内实现了 C_6 至 C_9 烃类混合物的分析。

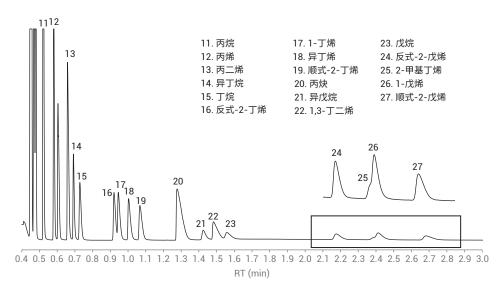


图 3. 在 CP-AL₂O₃/KCL 色谱柱(常规反吹配置,通道 3)上分析炼厂气标准品

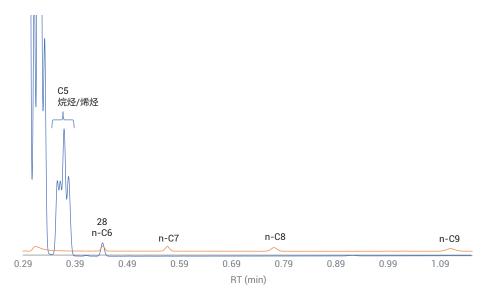


图 4. 在 8 m CP-Sil 5CB 色谱柱(通道 4)上分析炼厂气标准品(蓝色迹线)和 C₆至 C₉ 烃类混合物(红色迹线)

图 5 展示了在 CP- AL_2O_3/KCL BF2D 通道上获得的 C_3 至 C_5 烷烃/烯烃以及 C_6/C_6+ 烷烃合峰的色谱图。 C_6/C_6+ 烷烃被反吹经过参比柱到达检测器。可以将谱图中的负峰转换为正峰(峰 28)以进行定量分析。此测试通道的总分析时间少于 120 秒。

对比图 3 和图 5, $CP-AL_2O_3/KCL$ BF2D 通道上 2-甲基丁烯/1-戊烯的分离效果优于常规 $CP-AL_2O_3/KCL$ 反吹通道。两种氧化铝色谱柱反吹选件的预柱固定相不同。此外,BF2D 选件中预柱内径较小,使得C3 至 C5 烃类进入氧化铝分析柱时峰型更窄,因此最终分离度也更出色。

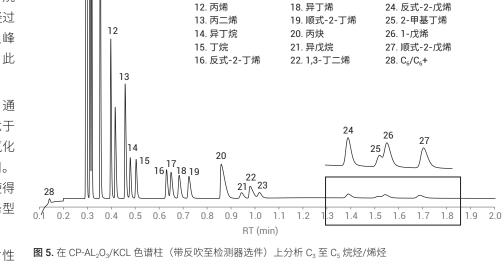
涂覆氧化铝的色谱柱具有很强的吸附性能,一些化合物(如水或二氧化碳)会积聚在色谱柱上,导致所分析化合物的保留时间发生变化。在低柱温(特别是 < 100°C)下操作时更容易出现上述现象。因此,建议定期在较高温度下^[3] 活化色谱柱表面,以获得更好的 RT 稳定性。

www.agilent.com/chem/contactus-cn

免费专线:

800-820-3278,400-820-3278(手机用户)

联系我们:


LSCA-China_800@agilent.com

在线询价:

www.agilent.com/chem/erfq-cn

www.agilent.com

本文中的信息、说明和指标如有变更,恕不另行通知。

11. 丙烷

结论

11

本研究展示了基于 Agilent 990 微型气相 色谱仪的快速炼厂气分析。有两种 RGA 解决方案可供选择。两种方法都可以分析 永久性气体、 H_2S 和 C_2 至 C_5 烷烃/烯烃。 三通道配置能够分析 C_6 + 烷烃的总含量。 四通道配置可提供单个 C_6/C_6 + 烃类的详细信息。选择哪一种方法用于炼厂气分析 取决于样品组成和分析要求。在 RGA 质量控制和精炼工艺优化中,如果单个重质 烃类 ($\geq C_6$) 的浓度结果不那么重要,那么三通道配置是快速炼厂气分析的理想选择。如需获得 C_6 + 烃类化合物的详细信息,则推荐使用四通道配置。

参考文献

17.1-丁烯

23. 戊烷

- 1. Duvekot, C. Fast Refinery Gas
 Analysis Using the Agilent 490 Micro
 GC QUAD(使用四通道配置 Agilent
 490 微型气相色谱仪快速分析炼厂
 气,安捷伦科技公司应用简报,
 出版号 SI-02233,**2012**
- 2. Zhang, J. 使用配备反吹至检测器选件的三通道配置 490 微型气相色谱仪对炼厂气进行超快分析,安捷伦科技公司应用简报,出版号5994-0040ZHCN, **2018**
- Poole, C. F., Ed.; Gas
 Chromatography, Chapter 5,
 Gas-Solid Chromatography, Elsevier Inc., 2012

